

Programming IoT Gateways With macchina.io

Günter Obiltschnig
Applied Informatics Software Engineering GmbH

Maria Elend 143
9182 Maria Elend

Austria
guenter.obiltschnig@appinf.com

This article shows how to program IoT Gateway devices in macchina.io, a new open
source software platform.

IoT Gateways play a central role in many Internet of Things applications. They are
the link between (wireless and low-power) sensor and fieldbus networks, as well as
“legacy” devices (typically connected via RS-232, RS-485 or USB interfaces) on the
one side, and cloud or enterprise systems on the other side. Typically, an IoT
Gateway device is based on a powerful ARM Cortex or Intel SoC and running a
Linux operating system. Some devices include high-speed cellular network
interfaces. IoT Gateways are often used in highly customer-specific environments, so
easy programmability is an important feature. The application-specific code running
on these devices in many cases is neither very complex nor performance-critical.
Typically, it has to acquire some data from connected sensors or devices, preprocess
this data, and send it to a cloud or enterprise server for further processing and/or
storage.

In the last few years JavaScript has become one of the most popular programming
languages. While having its roots in client-side web development, JavaScript is now
also a very popular programming language for server-side development, due to
projects like node.js. Furthermore, the competition among the Firefox, Chrome and
Safari browsers has brought with it a race for the fastest JavaScript engine. Most
modern JavaScript engines like Google’s V8 now compile JavaScript into machine
code, resulting in good performance even for non-trivial applications, or on resource
constrained systems.

On the other hand, C++ has also seen a renaissance in recent years, mostly driven by
two factors: the new C++11 and C++14 standards, bringing modern features like
lambdas to the language, and the need for maximum efficiency and performance,
which, despite years of promises, are still not matched by virtual machine based
languages like Java or the .NET family of languages.
A new open source platform, macchina.io, combines the flexibility of JavaScript for
rapid application development with the power and performance of native C++ code.
macchina.io is mostly implemented in C++, for maximum performance and
efficiency. Although JavaScript plays a big role in macchina.io as the preferred
language for high-level application development, it is not used much in the
implementation of macchina.io itself, except for some parts of the web user interface.
The combination of JavaScript for rapid high-level development, with C++ for

performance critical, or low-level code, makes macchina.io a perfect platform for
IoT gateway devices. Furthermore, a unique bridging system and a code generator
make it easy to consume services written in C++ from JavaScript, without the need
to manually write awkward glue code required to make C++ objects accessible from
JavaScript.

The foundation of macchina.io is the so-called "Platform" (see Figure 1). It consists
of the POCO C++ Libraries, the Remoting framework, the Open Service Platform
(OSP) and the JavaScript environment, based on the V8 JavaScript engine.

Figure 1: macchina.io Overview

The POCO C++ Libraries are modern, powerful open source C++ class libraries and
frameworks for building network- and internet-based applications that run on
desktop, server, mobile and embedded systems. They provide essential features such
as platform abstraction, multithreading, XML and JSON processing, filesystem
access, logging, stream, datagram and multicast sockets, HTTP server and client,
SSL/TLS, etc. Virtually everything implemented in macchina.io (except some
integrated third-party open source projects) is based on the POCO C++ Libraries.
The Open Service Platform (OSP) enables the creation, deployment and management
of dynamically extensible, modular applications, based on a powerful plug-in and
services model. Applications built with OSP can be extended, upgraded and
managed even when deployed in the field. At the core of OSP lies a powerful
software component (plug-in) and services model based on the concept of bundles. A
bundle is a deployable entity, consisting of both executable code (shared libraries or
JavaScript) and the required configuration, data and resource files (e.g., HTML
documents, images and stylesheets required for a web site). Bundles extend the

functionality of an application by providing certain services. A central Service
Registry allows bundles to discover services provided by other bundles. Bundles can
be installed, upgraded, started, stopped or removed from an application
(programmatically, or using a web- or console based administration utility) without
the need to terminate and restart the application.

Remoting is a distributed objects and web services framework for C++. The
framework enables distributed applications, implementing high-level object-based
inter-process communication (IPC), remote method invocation (RMI) or web
services based on SOAP/WSDL. In macchina.io, Remoting is used for the C++-to-
JavaScript bridging mechanism. It can also be used for efficient RPC-based inter-
process communication, using the TCP transport.

The JavaScript environment in macchina.io is based on the Google V8 engine. V8 is
the JavaScript engine used in the Google Chrome browser and node.js, a well-known
server-side JavaScript platform. V8 compiles JavaScript directly into optimized
machine code, ensuring good performance. There are bindings that enable using
certain features of the POCO C++ Libraries and OSP in JavaScript code. Examples
are database access (SQLite), HTTP(S) client, access to application configuration
and environment, OSP service registry, etc. JavaScript can also be used to write
servlets and server pages for the built-in web server. This makes it easy to visualize
sensor data on a web page hosted by macchina.io’s built in web server.
The IoT Components are the "heart" of macchina.io. Various OSP bundles and
services implement features such as interfaces to devices and sensors, network
protocols such as MQTT, interfaces to cloud services (e.g., for sending SMS or
Twitter messages), and the web-based user interface of macchina.io. All this is
available to JavaScript and C++ code.

macchina.io defines generic interfaces for various kinds of sensors and devices.
Based on these interfaces, different implementations are available that make specific
sensors and devices available in macchina.io. There are interfaces and
implementations for generic sensor types such as temperature or humidity sensors,
GNSS/GPS receivers, accelerometers, triggers, GPIO ports, serial port devices,
barcode readers, etc. Additional sensor types and implementations can be easily
added as well.
macchina.io implements various protocols for talking to sensor networks, automation
systems, or cloud services. One such protocol is MQTT, a publish-subscribe based
"light weight" messaging protocol for use on top of the TCP/IP protocol, which is
popular for building cloud-connected IoT applications.
The user interface of macchina.io is entirely web-based (Figure 2). Some parts of the
web interface (e.g., System Information, Sensors and Devices, GNSS Tracking,
MQTT Clients) are built entirely in JavaScript, both on the client and on the server
side. Other parts combine JavaScript on the client side with C++ REST services on
the server side. A highlight of the web user interface is the "Playground" app (Figure
3). It provides a comfortable browser-based JavaScript editor and allows running
JavaScript code on the device. This allows for very easy prototyping and
experimentation. Instead of having to compile code on a host system, then transfer
the resulting binary to the device, the code can be edited directly on the device and
run with the simple click of a button.

Figure 2: The macchina.io Web User Interface

The Playground comes pre-loaded with the macchina.io variant of the "Hello,
world!" program - a short script that finds a temperature sensor and obtains the
current temperature from the sensor. The script is shown in the following.

// Search for temperature sensors in the Service Registry
var temperatureRefs = serviceRegistry.find(
 'io.macchina.physicalQuantity == "temperature"');
if (temperatureRefs.length > 0)
{
 // Found at least one temperature sensor – resolve it.
 var temperatureSensor = temperatureRefs[0].instance();
 // Get current temperature.
 var temperature = temperatureSensor.value();
 logger.information('Current temperature: ' + temperature);
}
else
{
 logger.error('No temperature sensor found.');
}

Example 1: The macchina.io “Hello, world!” JavaScript program

The program shows two things: how to obtain a sensor service object from the
Service Registry, and how to write logging output.

To find available sensors in the system, the macchina.io Service Registry is used. All
available sensors and devices will be represented as service objects using that
registry. In order to find a specific object, the service registry supports a simple
query expression language that allows finding services based on their properties. In
the example above, we specifically look for a temperature sensor. In macchina.io,
sensors always have a property named io.macchina.physicalQuantity that can be

used to search for sensors that measure a specific physical quantity. The find method
will return an array of service references. Service references are different from actual
service objects. Their purpose is to store service properties (like the mentioned
io.macchina.physicalQuantity), as well as a reference to the actual service object.
The actual service object can be obtained by calling the instance() function, like we
do in the sample. Once we have the temperature sensor object, we can use it to obtain
the current value by calling the value() function.

Figure 3: The macchina.io Playground App

In the Playground app, the script can be run on the device by clicking the "Run"
button above the editor.

As a next step, the program can be modified so that it will periodically output the
current temperature. This is done by setting up a timer, using the setInterval()
function. Here's the modified code:

var temperatureRefs = serviceRegistry.find(
 'io.macchina.physicalQuantity == "temperature"');
if (temperatureRefs.length > 0)
{
 var temperatureSensor = temperatureRefs[0].instance();
 logger.information('Found temperature sensor.');
 setInterval(
 function() {
 logger.information('Current temperature: ' +
 temperatureSensor.value());
 },
 1000
);
}
else
{

 logger.error('No temperature sensor found.');
}

Example 2: Periodically querying sensor data.

Sensor objects also support events, so scripts can be notified when a sensor
measurement changes. A script can register a callback function to be notified as
follows:

temperatureSensor.on('valueChanged',
 function(event) {
 logger.information('Temperature changed: ' +
 event.data);
 }
);

 Example 3: Events and callback functions

JavaScript code can also invoke web services. The final code example shows how to
invoke a HTTPS based web service from JavaScript. If the temperature exceeds a
certain limit, we'll send a SMS message using the Twilio SMS cloud service. First,
the JavaScript function to send a SMS message:

function sendSMS(message)
{
 var username = 'username';
 var password = 'password';
 var from = '+1234567890';
 var to = '+1432098765';

 var twilioHttpRequest = new HTTPRequest(
 'POST',
 'https://api.twilio.com/2010-04-01/Accounts/' +
 username + '/SMS/Messages');
 twilioHttpRequest.authenticate(username, password);
 twilioHttpRequest.contentType =
 'application/x-www-form-urlencoded';
 twilioHttpRequest.content =
 'From=' + encodeURIComponent(from) +
 '&To=' + encodeURIComponent(to) +
 '&Body=' + encodeURIComponent(message);

 var response = twilioHttpRequest.send(function(result) {
 logger.information('SMS sent with HTTP status: ' +
 result.response.status);
 logger.information(result.response.content);
 });
}

Example 4: Sending a SMS message using the Twilio cloud service

And finally the code to check the temperature, and to send the message if a
temperature limit (30 ˚C) is exceeded:

var smsSent = false;

var temperatureRefs = serviceRegistry.find(
 'io.macchina.physicalQuantity == "temperature"');
if (temperatureRefs.length > 0)
{
 var temperatureSensor = temperatureRefs[0].instance();
 temperatureSensor.on('valueChanged',
 function(event) {
 if (event.data > 30 && !smsSent)
 {

 sendSMS('Temperature limit exceeded!');
 smsSent = true;
 }
 }
);
}

Example 5: Monitoring a temperature and alerting via SMS

In this article we have introduced macchina.io, a new open source toolkit for
programming IoT Gateway devices, combining JavaScript for rapid high-level
application development with C++ for high performance low-level development.
Beside being a great platform for manufacturers of IoT Gateway devices,
macchina.io is also great for prototyping, e.g. using a Raspberry Pi combined with
Tinkerforge. macchina.io is licensed under the Apache 2.0 license and available from
GitHub. More information and downloads can be found at http://macchina.io.

